
DISTRIBUTED DATABASE AN OVER VIEW

A Distributed database is a collection of data which belong logically to the same system but they

are spread over the sites of a network. Two important aspects of distributed database are

 1) Distribution

 2) Logical correlation

Distribution:

 The data are not resident in the same site that is it can be distributed among various sites

within the network.

Logical correlation:

 The data has some properties which tie them together so that a distributed database form a set

of local database or files which are resident at different sites of computer network. It has to

specify what type of network can be used for connecting the database and files.

 A distributed database on a geographically dispersed network. In this example 3 branches

are located at 3 different places each branch contains its own computer terminals and databases.

Each branch can access the data locally or globally. It is otherwise known as local application or

global application.

 The global access of data is a tedious task so local network are used.

Example:2 Distributed database on a local network

 The physical structure of a connection can be changed and the data that are accesses locally is

to be considered local but the locality of the terminals is not defined with respect to the

geographical distribution.

 Local network will provide high throughput and reliability because the databases can be

distributed.

Example 3: Multiprocessor system

 Here the data is physically distributed over different processors but distribution is not based on

the application or region. Here no computer is capable of executing an application by itself

everything can be accessed thru the front end processor called front end application so the

multiprocessor system is not a distributed system.

• So from these examples the distributed database can be defined as the co-operation

database can be connected by the systems thru the region and each region or site has

its autonomy for accessing the local and global applications.

FEATURES OF DISTRIBUTED VERSUS CENTRALIZED DATABASE:

• Centralized Control

• Data independence

• Reduction of redundancy

• Complex physical structures for efficient access

• Integrity , Recovery & Concurrency control.

• Privacy & Security.

 CENTRALIZED CONTROL:

 • Provide centralized control over the information resources of a whole enterprise or

organization

In DDB

• Depends on architecture (Example 1.2 lends to centralize control than 1.1)

• Identify Hierarchical control structure

Global Database Administrator

Central responsibility of whole DB Local DBAs

 •Responsible for their local DB

 • Have high degree of autonomy (Site autonomy)

 • Perform intersite coordination

• Site Autonomy vary from complete with no centralized DBA to completely centralized control

DATA INDEPENDENCE:

 The actual organization of data is transparent to the application programmer. Programs

written having conceptual view of data (conceptual schema) & unaffected by changes in

physical organization of data.

In Traditional DB

• Multilevel architecture having different data description & mapping Conceptual , Storage

and external schema developed.

 In DDB

• Same importance as traditional DB.

• Introduce Distribution Transparency

• Programs can be written as if the database were not distributed.

• Correctness of programs unaffected by data movement from site to another while speed of

execution is affected

• Obtained by introducing new levels and schemata

REDUCTION OF REDUNDANCY:

 In Traditional DB

• Reduced by data sharing (several application access same files and records) for 1.

Inconsistencies among several copies of the same logical data 2. Storage space saved

 In DDB

• Data redundancy needed for 1. Increase locality of application if data replicated at all sites 2.

Increase availability of the system as site failure does not stop application execution at other site.

• Data redundancy reduced for reasons same as Traditional DB.

• Data replication convenience increase with ratio of retrieval accesses (any copy) versus

update accesses (all copies) performed by applications to it.

COMPLEX PHYSICAL STRUCTURE FOR EFFICIENT ACCESS:

 In Traditional DB

• Secondary indexes, interfile chains & others.

• Their support is important for DBMSs

• Used to obtain efficient access to data

In DDB

• Not right tool for efficient access.

• Efficient access can’t be provided by this structure as

 1. Very difficult to build and maintain such structures.

 2. Not convenient to navigate at record level in DDB

Navigation example

• Find all PART records supplied by supplier S1

• Application run from site1

Find SUPPLIER record with SUP# = S1; Repeat until “no more members

in set” Find next PART record in SUPPLIER-PART set; Output PART

record;

 (b) Codasyl-DBMS-like program

NAVIGATION EXAMPLE:

• More efficient implementation (grouping processes)

•Distributed Access Plan : how the data must be accessed

• As navigational programming in centralized DB.

• Steps 1. Execution of program local at single site

 2. Transmission of files between sites

• Can be written by programmer or automatically produced by optimizer.

Optimizers’ Design problems

Categories

Global Optimization Local Optimization

• Which data must be accessed at • how to perform local DB access at each site.

Which site& which data files must • Typical to traditional , no distributed DB pr

Consequently be transmitted problems

between sites

• Optimization parameter:

 • Communication cost

 • Accessing the local DBs cost

• Importance of these factors depend on relation between communication cost & disk access

cost , which depend on communication network.

• Research here aids in understanding how

 DDB can be efficiently accessed even if

access plans not produced automatically

INTERGRITY, RECOVERY AND CONCURRENCY CONTROL

• Strongly Correlated issues .

• Solution : providing transactions.

• Transaction

•Definition: Atomic unit of execution – set of operations performed entirely or not at all.

• Example: Funds transfer example (debit & credit)

• Problem: debit at an operation site & credit at non operational site

• How to act ?! Abort transaction or find smart way to execute transfer even if sites not

simultaneously operating ?

• Transaction atomicity enemies

 • Failures

 • Concurrency

DB integrity

• Transaction atomicity assure DB integrity by assuring all actions transfer DB from consistent

state to another are performed or initial consistent state is preserved.

• Recovery: Deals with preserving transaction atomicity in the presence of failures.

• Concurrency Control: Deals with ensuring transaction atomicity in the presence of concurrent

execution of transactions.

 Problems : Synchronization harder in DDB than in centralized DB

PRIVACY AND SECURITY

 In Traditional centralized DB

• DBA has centralized control

• DBA ensures only authorized access is performed

• Without specialized control procedures, is weak to privacy & security violations than older

separate files based approaches

In DDB

• Local DBAs face same DBA problems in traditional DB.

• In DDB with very high degree of autonomy, local DBA more protected through enforcing their

own protection instead of central DBA.

• Communication networks represents a weak point with respect to protection

•Problems of privacy & security

WHY DISTRIBUTED DATABASES

1. Organizational and economic reasons.
 • Many decentralized organizations structurally fitted by DDB

 • Economy of scale motivation for having large centralized computer centers.
2.Interconnection of existing DBs

• Necessity of performing global applications for DBs exist in organizations

• Creating bottom-up DDB from existing local DBs having less effort from completely new
centralized DB creation

3. Incremental growth.

 •Adding new relatively autonomous branches for organizations

 •With centralized approach would have to Either take care for future dimension expansion in
initial design – difficult & expensive Or the growth will have major impact on existing
applications

4. Reduce communication overhead

 • w.r.t. centralized DB as in example 1.1

 • Maximization of locality of application is 1 primary objective in DDB design

5. Perform considerations
 • Several autonomous processors
 • High degree of parallelism – increase performance
 • In DDB decomposition of data reflects application dependence criteria, maximize
application locality ; mutual interference between different processors minimized.

 • Load is shared between different processors

• Bottlenecks as communication network itself or common services of the whole system are
avoided.

6. Reliability and availability

•Autonomous processing capability of sites do not guarantee reliability but insures
Graceful degradation property: failures in DDB is can be higher than in centralized DB for
greater # of components but failure affect only applications using failed site , complete system
crash is rare.

• Why DDB development begun ?

1. Small computers instead of large mainframes constitutes necessary h/w needed.

2. DDB development depends on Computer Network& Database technologies Which are developed

sufficiently.

Distributed Database Management Systems (DDBMSs)

Services provided by above type of systems are

• Remote DB access by an application program

• Some degree of distribution transparency.

• Support for database administration & control

• Some support for concurrency control & recovery of distributed transactions

DDBMSs provides access remote DB by an application through

• Units shipped between Systems by

 1.DB access primitive

 2.Result obtained by executing it

• Assures distribution transparency

• Auxiliary program executed at remote site is required by application which

 1.Access remote DB

 2.Return the result to requesting application

•Efficient if many DB access is required for auxiliary program perform all required access and

send only result back.

Homogeneity and Heterogeneity of DDBMSs

• Can be over

• Hardware

• Operating system Managed by communication software
• Local DBMSs

• Homogenous DDBMS :

 • DDBMSs with same DBMS at each site.

 • Preferred to be built in case of top-down without preexisting system development of DDB

• Heterogeneous DDBMS :

 • At least two different DBMSs.

 • Added translating between different models of DBMSs problem.(Ch.15) • Used in case of

integrating preexisting DBs .

 • Actually systems supported some degree of it with no translation between different data model

 • Some systems support communication between different DC components

LEVELS OF DISTRIBUTION TRANSPERANCY

 At different levels the application programmer view the distributed database depending on how

much distribution is provided to DDBMS

Reference architecture for Distributed Databases

Global Schema:

• Define all data contained in DDB as if DB is not distributed.

• Using relational model - Consists of the definitions of a set of global relations.

• Can be spitted to several no overlapping Fragments.

Fragmentation Schema:

• Defines the mapping between global relations and fragments(1:M mapping)

• Logical portions of physical global relations located at 1 or several sites of network

• Notation: Ri where R is the global relation , Ri is the ith fragment of R

Allocation Schema:

• At which site(s) the fragment is located.

• Type of mapping defined here determines DDB is redundant(1:M) or not(1:1).

• Rj indicates physical image of global relation R at site j

•A copy of a fragment at given site Donated using global relation name & 2 indexes(fragment

index and site index) Indicates copy of fragment R2 located at site 3

Local mapping Schema:

• Map physical images to the objects which are manipulated by the local DBMSs.

•Depends on type of DBMS (different mapping in heterogeneous system) .

Objectives motivate the architecture features:

1. Separating the data fragmentation concept from data allocation concept. Allow

distinguish Transparency

Fragmentation transparency Location transparency

• Highest degree of transparency • Lower degree of transparency
• Require user or application programmer • require user or application

 Works on global relations. Programmer works on fragments

 Instead of global

2. Explicit control of redundancy at fragmentation level (R2 & R3 overlapping i.e. contain

common data)

3. Independence from local DBMSs(called Local Mapping transparency) Allow study DDBM

problems without taking in account specific data models of local DBMSs.

Replication Transparency:

 • Implied by location transparency (not distinguish in book)

 • User unaware of fragments replication.

Types of Data Fragmentation

HORIZONDAL FRAGMENTATION VERTICAL FRAGMENTATION

• A Fragment : Expression in a relational language, taking global relations as operands and

produces the fragment as a result.

• Rules on defining fragments:

1. Completeness condition: No data item do not belong to any fragment. - Set of qualifications

(conditions) of all fragments must be complete

2. Reconstruction condition: Must be able to construct global relation from its fragment

3. Disjointness condition: Fragment be disjoint; so that replication of data can be controlled

explicitly at allocation level. (HZ fragmentation)

• Horizontal Fragmentation:

• Partition tuples of global relation into subsets

• Example

•Applying Rules of fragmentation:

1. Completeness condition if “SF” and “LA” are only cities values

2. Reconstruction condition.

3. Disjointness verified.

• Derived Horizontal Fragmentation:

• Example:

•Applying Rules of fragmentation:

1. Completeness condition (Referential integrity constraint) no supplier # in SUPPLY not

contained also in SUPPLIER.

2. Reconstruction condition

3. Disjointness verified if tuple in SUPPLY does not corresponds to 2 tuples of SUPPLIER

relation which belong to 2 different fragments

• Vertical Fragmentation:

• Example:

• Mixed Fragmentation:

• Example:

Distribution transparency for Read-only Applications Language definitions:
Language definitions:

 • All variables: strings(arrays)

 • Input : read(filename, variable)

 • Output: write(filename, variable)

 • Filename : “terminal” if I/O performed at terminal

 • Pascal var used in SQL statement: prefixed with $ symbol

 • Pascal var used for Success or failure of a required DB operation: prefixed with # symbol

 • SQL I/O

(SUPINQUIRY) In 3.5-b can be written as

(SUPINQUIRY)

Complex Application(SUPOFPART) : retrieve name of the supplier who supplies a given part.

Distribution transparency for Update Applications

Distribution Database Access Primitives

•Language definitions:

 •For DB access Query returns Several values not just 1 as before

 •Suffix REL : file by Pascal like & relation by SQL statement

Integrity constraints in DDBs
Integrity Constraints samples:

 • Which data values are allowed (age must be between 0 and 100)

 • Which transactions are allowed(age cannot decrease)

 • Can involve single or multiple relations

 •All values of a given attribute of a relation exist also in some other relation for ensuring

correctness of derived fragmentation

• Example

