DISTRIBUTED DATABASE AN OVER VIEW

A Distributed database is a collection of data which belong logically to the same system but they
are spread over the sites of a network. Two important aspects of distributed database are

1) Distribution
2) Logical correlation
Distribution:

The data are not resident in the same site that is it can be distributed among various sites
within the network.

Logical correlation:

The data has some properties which tie them together so that a distributed database form a set
of local database or files which are resident at different sites of computer network. It has to
specify what type of network can be used for connecting the database and files.

/’/-———— _-‘ = B ¥

‘ Databasze | I \ /)ul;bug 2 \
/ ~T T
I [= <--‘r) = /T

_—"‘-.- ’/

". Computer T \ Computer :‘:-—-—7
.\' : i“ —T
\ i
“\\ \\\—
% SNy

Cammunicanen
nerwors

s R
T e
Ty Comnu cr
‘_'_— Database 3 /

Figure 1.1 A disributec database on a gecgraphically gispersed network

A distributed database on a geographically dispersed network. In this example 3 branches
are located at 3 different places each branch contains its own computer terminals and databases.
Each branch can access the data locally or globally. It is otherwise known as local application or
global application.

The global access of data is a tedious task so local network are used.

Example:2 Distributed database on a local network

Compurer center

Database 1 l Database 2 l
\q

Cumputcr Co"\pu[er
1 2

-

i

A

Local
network

Computer

/

Figura 1.2 A distributed database on 2 local network.

The physical structure of a connection can be changed and the data that are accesses locally is
to be considered local but the locality of the terminals is not defined with respect to the
geographical distribution.

Local network will provide high throughput and reliability because the databases can be
distributed.

Example 3: Multiprocessor system

Computer center

Database 2 | | Database 3
N =,

Backend Backend Backend
computer 1| |computer 2| |computer 3

——

\ Local network) /

Application
(front<nd)
computer

LIS

/ /
SO

Flgure 1.3 A multiprocessor system

Here the data is physically distributed over different processors but distribution is not based on
the application or region. Here no computer is capable of executing an application by itself

everything can be accessed thru the front end processor called front end application so the
multiprocessor system is not a distributed system.

e So from these examples the distributed database can be defined as the co-operation
database can be connected by the systems thru the region and each region or site has
its autonomy for accessing the local and global applications.

FEATURES OF DISTRIBUTED VERSUS CENTRALIZED DATABASE:

e Centralized Control

e Data independence

e Reduction of redundancy

e Complex physical structures for efficient access
e Integrity , Recovery & Concurrency control.

e Privacy & Security.

CENTRALIZED CONTROL.:
* Provide centralized control over the information resources of a whole enterprise or
organization
In DDB
* Depends on architecture (Example 1.2 lends to centralize control than 1.1)

» Identify Hierarchical control structure

Global DatabIse Administrator

l

Central responsibility of whole DB Local DBAs
*Responsible for their local DB

* Have high degree of autonomy (Site autonomy)
* Perform intersite coordination

* Site Autonomy vary from complete with no centralized DBA to completely centralized control

DATA INDEPENDENCE:

The actual organization of data is transparent to the application programmer. Programs
written having conceptual view of data (conceptual schema) & unaffected by changes in
physical organization of data.

In Traditional DB

« Multilevel architecture having different data description & mapping Conceptual , Storage
and external schema developed.

In DDB

» Same importance as traditional DB.

* Introduce Distribution Transparency
* Programs can be written as if the database were not distributed.

* Correctness of programs unaffected by data movement from site to another while speed of
execution is affected

* Obtained by introducing new levels and schemata
REDUCTION OF REDUNDANCY::

In Traditional DB
* Reduced by data sharing (several application access same files and records) for 1.
Inconsistencies among several copies of the same logical data 2. Storage space saved

In DDB
* Data redundancy needed for 1. Increase locality of application if data replicated at all sites 2.
Increase availability of the system as site failure does not stop application execution at other site.

* Data redundancy reduced for reasons same as Traditional DB.

« Data replication convenience increase with ratio of retrieval accesses (any copy) versus
update accesses (all copies) performed by applications to it.

COMPLEX PHYSICAL STRUCTURE FOR EFFICIENT ACCESS:

In Traditional DB
* Secondary indexes, interfile chains & others.

* Their support is important for DBMSs

» Used to obtain efficient access to data

In DDB
* Not right tool for efficient access.

« Efficient access can’t be provided by this structure as
1. Very difficult to build and maintain such structures.
2. Not convenient to navigate at record level in DDB
Navigation example

* Find all PART records supplied by supplier S1

* Application run from sitel

SUPPLIER
SUPs# SUPNAME |..........

SUPPLIER-PART

PART '
PART# | WAREHOUSE | SUP# |

(a) A Codasy! database schema.

Find SUPPLIER record with SUP# = S1; Repeat until “no more members
in set” Find next PART record in SUPPLIER-PART set; Output PART

record;

(b) Codasyl-DBMS-like program

Site 1: Central
administration

Supplicr filc
/ gl
|f Site 2: Warehouse A Site 3. Warcehouse B
\ Part Part
\ file file
l\t.
(..--- PID A f I _,..---"'""-'-_/? P50 B 7 [
-~ A)
P11 A | St B ||
Vo ,’-'f Pl P33 §
[A PE | A s | / e BT | B | S
K‘L ..--"'f e
\:‘-"—-""_" & -~ il
‘""u._._______...--""'"

{c) Distribution of the SUPPLIER-PART set.

Flgure 1.4 A distributed Codasyl-like database.

NAVIGATION EXAMPLE:

1)
)

3)

At site 1

Send sites 2 and 3 the supplier number SN

At sites 2 and 3

Execute in parallel, upon receipt of the supplier number, the following program:

Find all PARTS records having
SUP # = SN,
Send result to site 1,

At site |
Merge results [rom sites 2 and 3;

Output the result,

Figure 1.5 Example of 2¢¢ess plan

» More efficient implementation (grouping processes)

*Distributed Access Plan : how the data must be accessed
* As navigational programming in centralized DB.

» Steps 1. Execution of program local at single site
2. Transmission of files between sites
+ Can be written by programmer or automatically produced by optimizer.

Optimizers’ Design problems

Categories
Global Optimization Local Optimization
» Which data must be accessed at * how to perform local DB access at each site.
Which site& which data files must * Typical to traditional , no distributed DB pr
Consequently be transmitted problems

between sites

* Optimization parameter:
« Communication cost

* Accessing the local DBs cost

* Importance of these factors depend on relation between communication cost & disk access
cost , which depend on communication network.

* Research here aids in understanding how

DDB can be efficiently accessed even if

access plans not produced automatically

INTERGRITY, RECOVERY AND CONCURRENCY CONTROL
* Strongly Correlated issues .

« Solution : providing transactions.

* Transaction
*Definition: Atomic unit of execution — set of operations performed entirely or not at all.

« Example: Funds transfer example (debit & credit)
* Problem: debit at an operation site & credit at non operational site
* How to act ?! Abort transaction or find smart way to execute transfer even if sites not
simultaneously operating ?
* Transaction atomicity enemies
* Failures
* Concurrency
DB integrity
* Transaction atomicity assure DB integrity by assuring all actions transfer DB from consistent
state to another are performed or initial consistent state is preserved.
« Recovery: Deals with preserving transaction atomicity in the presence of failures.
« Concurrency Control: Deals with ensuring transaction atomicity in the presence of concurrent

execution of transactions.
Problems : Synchronization harder in DDB than in centralized DB

PRIVACY AND SECURITY
In Traditional centralized DB
* DBA has centralized control

* DBA ensures only authorized access is performed

» Without specialized control procedures, is weak to privacy & security violations than older
separate files based approaches

In DDB
* Local DBAs face same DBA problems in traditional DB.

* In DDB with very high degree of autonomy, local DBA more protected through enforcing their
own protection instead of central DBA.

« Communication networks represents a weak point with respect to protection

*Problems of privacy & security

WHY DISTRIBUTED DATABASES

1. Organizational and economic reasons.
* Many decentralized organizations structurally fitted by DDB

* Economy of scale motivation for having large centralized computer centers.
2.Interconnection of existing DBs

* Necessity of performing global applications for DBs exist in organizations
* Creating bottom-up DDB from existing local DBs having less effort from completely new
centralized DB creation
3. Incremental growth.

*Adding new relatively autonomous branches for organizations

*With centralized approach would have to Either take care for future dimension expansion in
initial design — difficult & expensive Or the growth will have major impact on existing
applications
4. Reduce communication overhead

* w.r.t. centralized DB as in example 1.1

* Maximization of locality of application is 1 primary objective in DDB design

5. Perform considerations

* Several autonomous processors

* High degree of parallelism — increase performance

* In DDB decomposition of data reflects application dependence criteria, maximize
application locality ; mutual interference between different processors minimized.

* Load is shared between different processors

* Bottlenecks as communication network itself or common services of the whole system are
avoided.

6. Reliability and availability

*Autonomous processing capability of sites do not guarantee reliability but insures
Graceful degradation property: failures in DDB is can be higher than in centralized DB for

greater # of components but failure affect only applications using failed site , complete system
crash is rare.

» Why DDB development begun ?

1. Small computers instead of large mainframes constitutes necessary h/w needed.

2. DDB development depends on Computer Network& Database technologies Which are developed
sufficiently.

Distributed Database Management Systems (DDBMSS)

Services provided by above type of systems are
* Remote DB access by an application program

» Some degree of distribution transparency.

* Support for database administration & control

 Some support for concurrency control & recovery of distributed transactions

DDBMSs provides access remote DB by an application through

DATABASE
e e ACCESS
Application PRIMITIVE
program |

e,

.

DBMS, RESULT Database 2

(2) Remote access via DBMS primitives.

e Units shipped between Systems by
1.DB access primitive
2.Result obtained by executing it

e Assures distribution transparency

REQUEST FOR

EXECUTION OF e
AUXILIARY 7 J

Application

Srogam PROGRAM DBMS,

Site 1
T T e TR e e i T sie:
—GLOBAL RESULT—f | DBMS, | DATABASE
Auxiliary == ACCESS —
program PRIMITIVES

Database 2

N

<* AND RESULTS

(&) Remuote access via an auxiliary program

Filgure 1.7 Types of accesses to a distributed database.

* Auxiliary program executed at remote site is required by application which
1.Access remote DB

2.Return the result to requesting application
Efficient if many DB access is required for auxiliary program perform all required access and

send only result back.

Homogeneity and Heterogeneity of DDBMSs

» Can be over
e Hardware

® Operating system Managed by communication software

® | ocal DBMSs
« Homogenous DDBMS :
* DDBMSs with same DBMS at each site.

* Preferred to be built in case of top-down without preexisting system development of DDB

» Heterogeneous DDBMS
* At least two different DBMSs.

* Added translating between different models of DBMSs problem.(Ch.15) < Used in case of
integrating preexisting DBs .

* Actually systems supported some degree of it with no translation between different data model
» Some systems support communication between different DC components

LEVELS OF DISTRIBUTION TRANSPERANCY

At different levels the application programmer view the distributed database depending on how
much distribution is provided to DDBMS

Reference architecture for Distributed Databases

-
Global
schema
g Site
Fragmentation
ol ~ independent
schemas
Allocation
schema

-
.
N\‘h-‘
—~— .~.~
S — —
S ——
™Y ‘h*
——

~
(Otar sites)

Local Local :
mapping mapping :
schema | schema 2

Local Local
database database
at site | atsite 2

Figure 3.1 A reference architacture for distributed databases

Global Schema:
* Define all data contained in DDB as if DB is not distributed.

» Using relational model - Consists of the definitions of a set of global relations.
* Can be spitted to several no overlapping Fragments.
Fragmentation Schema:

* Defines the mapping between global relations and fragments(1:M mapping)

* Logical portions of physical global relations located at 1 or several sites of network
* Notation: Ri where R is the global relation , Ri is the ith fragment of R

Allocation Schema:

* At which site(s) the fragment is located.

* Type of mapping defined here determines DDB is redundant(1:M) or not(1:1).

* Rj indicates physical image of global relation R at site j

A copy of a fragment at given site Donated using global relation name & 2 indexes(fragment
index and site index) Indicates copy of fragment R2 located at site 3

Local mapping Schema:
* Map physical images to the objects which are manipulated by the local DBMSs.
*Depends on type of DBMS (different mapping in heterogeneous system) .

|
|
! 1
: (R
-, e S SR S R} (site 1)
‘_/
R ,/'/w R,
[(R})
/th/
BESR= .._1—/"”
R;
(R})
: = ——1 R? (site 2)
S 1
N :
| P 2 (RD
Hr--\
!
| R*
-Aﬁﬁ_%‘ o |
: (Riy | R? Gsite 3)
| l
i |
i | e
i ' (R})
[| = e e
I
5 |
| 1 (R3)
g
Clobal relation Fragments Physical images

Figure 3.2 Fragments and physical images for a global relation

Objectives motivate the architecture features:
1. Separating the data fragmentation concept from data allocation concept. Allow

distinguish Transparency
Fragmentation transparency Location transparency
* Highest degree of transparency » Lower degree of transparency
* Require user or application programmer * require user or application
Works on global relations. Programmer works on fragments

Instead of global

2. Explicit control of redundancy at fragmentation level (R2 & R3 overlapping i.e. contain
common data)

3. Independence from local DBMSs(called Local Mapping transparency) Allow study DDBM
problems without taking in account specific data models of local DBMSs.

Replication Transparency:
* Implied by location transparency (not distinguish in book)

* User unaware of fragments replication.

Types of Data Fragmentation

HORIZONDAL FRAGMENTATION VERTICAL FRAGMENTATION

« A Fragment : Expression in a relational language, taking global relations as operands and
produces the fragment as a result.

* Rules on defining fragments:

1. Completeness condition: No data item do not belong to any fragment. - Set of qualifications
(conditions) of all fragments must be complete

2. Reconstruction condition: Must be able to construct global relation from its fragment

3. Disjointness condition: Fragment be disjoint; so that replication of data can be controlled
explicitly at allocation level. (HZ fragmentation)

 Horizontal Fragmentation:
* Partition tuples of global relation into subsets

» Example

SUPPLIER(SNUM, NAME, CITY)

Then the horizontal fragmentation can be defined in the following way:

SUPPLIER); = SL¢try—=-sp SUPPLIER
SUPPLIER; = SL¢rry=-1a~SUPPLIER

*Applying Rules of fragmentation:
1. Completeness condition if “SF” and “LA” are only cities values
2. Reconstruction condition.

SUPPLIER = SUI'PLIER, UN SUPPLIER,
3. Disjointness verified.

« Derived Horizontal Fragmentation:
* Example:

SUPPLY{SINUM, PNUM, DEPTNUM, QUAN)

SUPPLY, = SUPPLY SJsvys—snune STPPLIER,
SUPPLY; = SUPPLY SJsnym—snym SUP PLIER.

*Applying Rules of fragmentation:

1. Completeness condition (Referential integrity constraint) no supplier # in SUPPLY not
contained also in SUPPLIER.

2. Reconstruction condition

3. Disjointness verified if tuple in SUPPLY does not corresponds to 2 tuples of SUPPLIER
relation which belong to 2 different fragments

« Vertical Fragmentation:
* Example:

EMP(EMPNUM, NAME, SAL, TAX, MGRNUM, DEPTNUM)

A vertical fragmentation of this relation ean be defined as

EMP, = PJempnuv,Name MGRNUM, DEPTNUM EMP

EMPy; = PJpvpntm,sac. Tax EMP
This fragmentation could, for instance, reflect an organization in which salaries and
taxes are managed separately. The reconstruction of relation EMP can be obtained

as
EMP = EMP; INguypnum—empnum EMP;

For example, consider the following verlical fragmentation of relation EMP:

EMPy = PIgyrpnum NAME,MCRNUM, DEP Tvum EMP
EMP; = PJgupnunm NAME,SAL TAx EMP

The attribute NAME is replicated in both fragments. We can explicitly eliminate
this attribute when we reconstruct relation EMP through an additional projection

operation:
EMP = EMP; JNgypnum—EMeNUM P parpivers, sar, rax EMPy

» Mixed Fragmentation:
* Example:

EMP(EMPNUM, NAME, SAL, TAX, MGRNUM, DEPTNUM)

The following is a mixed fragmentation which is obtained by applying the vertical
fragmentation of the previous example, followed by a horizontal fragmentation on
DEPTNUM:

EMP, = SLpepryvvm<10PI eMprtum vame mcriuM.DEPTNU M EMP

EMP,; = Slho<peprvum<20PI eMpNUM, NAME. MGRNUM.DEPTNIM EMP

EMP; = SLpgpryuars20PJempyum, naMeMCRN UM, DEP TN UM EMP

EMP; = PJsmpyvus.vasie.sar, rax EMP

EMP, EMP, EMP,

Flgure 3.3 The fragmentation tree of relation KMFP.
The reconstruction of relation EMP is defined by the following expression:

EMP = UN (E.\’[Pl. EMP;, EMP3)IN eMpNUM-—~ EMPNUM
Pleupnum,sar. Tax EMP;y

Global schema
EMP{EMPNUM, NAMF, SAL, TAX, MGRNUM, DEPTNUM)
DEPTYDEPTNUM, NAME, AREA, MGRNUM)
SUPPLIER(SNUM, NAME, CITY)
SUPPLY(SNUM, PNUM, DEPTNUM, QUAN)
Fragmentation schema
EMP, = SLpgpTivume 10PTEMPNUM,NAME MGRNUM, DEPTN UM EMP)
EMP; = SLyo< pEPTNUM <20PI EMPNUM,NAME MGRN UM, DEPTN UM EMP)
EMPy = SLpepTNUM:-20PT EMPNUM.NAME MGRN UM, DEPTNUM EMP)
EMPs = Pl gy pNUM, NAME, SAL, TAX(EMP)
DFEPTy = SL pepryeyase 10(DEPT)
DEPTz =~ Sklay. pepTNUM=<20(PEPT)
DEPT3 = SLpgpraum: 20(PEPT)
SUPPLIER; = SLppy — «sp~ (SUPPLIER)
SUPPLIER; = SL ryry ..« a» |SUPPLIER)
SUPPLY) = SUPPLY SJanpy— sxumSUPPLIER,
SUPPLYz = SUPPLY S¥gnpas . sNUmSUPPLIER,

Figure 3.4 The global and fragmentation schemata of EXAMPLE.DDB.

Distribution transparency for Read-only Applications Language definitions:
Language definitions:

* All variables: strings(arrays)

* Input : read(filename, variable)

* Output: write(filename, variable)

* Filename : “terminal” if I/O performed at terminal

» Pascal var used in SQL statement: prefixed with $ symbol

» Pascal var used for Success or failure of a required DB operation: prefixed with # symbol

« SQL 1/0

Select NAME into $NAME
from SUPPLIER
where SNUM = $SNUM

read (terminal SSNUM). - -
Select NAME inito SNAME 5 -
from SUPPLIER
where SNUM = $SNUM. W
write(terminal SNAME), -

{2) Frugmentation transparency (level 1)

read(termunal SSNUM);
Select Name iato SNAME
from SUPPLIER,
where SNUM = SSNUM;
if not #FOUND then
Select NAME into INAME
from SUPPLIER,
Where SNUM = SSNUM;

write{terminal SNAME)

(&) Location transpazency (level 2)

readiterminal SSNUM), DDBMS

Select NAME into SNAME e =
from SUPPLIER, AT SITE | P s S s e) Site |
where SNUM = SSNUM.

if not ®FOUND then

Select NAME into SNAME

from SUPPLIER; AT SITE 3 — — - Site 3

whare SNUM = SSNUM; SUPPLIER,
wnte(terminal SNAME)

{¢) Local mapping transparency (level 3).

Flgure 8.8 The read-only spplication SUPINQUIRY
at different levals of distribution trgnsparency.

(SUPINQUIRY) In 3.5-b can be written as

SUPINQUIRY:
read (terminal, 3SNUM};
read (terminal, $CI'TY);
case SCITY of
“QF": Select NAME into SNAME
from SUPPLIER,
.where SNUM = 3SNUM:
“LLA": Select NAME into $NAME
from SUPPLIER2
where SNUM = §SNUM
end;
write (terminal, NAME).

(SUPINQUIRY)

SUPINQUIRY:
Read (termingl, SSUPNUM),

Execute $SUPIMS($SUPNUM SFOUND ANAME) ar sita §;
1f not SFOUND

Thea eazcute SSUPCODASYLISSUPNUM, SFQUND,SNAME Jat sxtc*:-]

Wnte (terminal, SNAME),

DDBMS

- o
| SUPIMS{SNUM. FOUND,NAME)-
{ Get unique SUPPLIER_SEGMENT
oo

|

|

l

- |

| |
-t

|

|

|

|

|

|

|

|

|

— — -— | [———
| 1
1

| L
[

|

|

|

!

|

!

|

|

SUPCODASYLISNUM, FOUNDNAME):
Find SUPPLIER_RECORD

SRS R

o ——

Locat DBMS
(Codasyl) |

i

(IMS)

L______ Local DBMS
I

Codasyl database w

Site 3 Sire |

Flgure 3.8 An applicaticn ¢n a heterogeneous distributed
database without transparency.

Complex Application(SUPOFPART) : retrieve name of the supplier who supplies a given part.

read(terminal, SPNUM):

Select NAME into $NAME

from SUPPLIER, SUPPLY

where SUPPLIER. SNUM=SUPPLY SNUM
and SUPPLY . PNUM=SPNTM;

writei{terminal, SNAME).

{3} Frsgmentation transparency (level 1)

read(terminal, $SPNUM);
Select NAME into SNAME
from SUPPLIER, SUPPLY
where SUPPLIER). SNUM=SUPPLY, SNUM
and SUPPLY, PNUM==$PNUM;
if not #FOUND then
Select NAME into SNAME
from SUPPLIER2 SUPPLY;
where SUPPLIER2 SNUMe SUPPLY2 SNUM
and SUPPLY:. PNUM=3PNUM;
write{terminal, $NAME).

(b) Location transparcncy (level 2}

résd(terminal, SPNUM);
Select SNUM into $SNUM
from SUPPLY} at site 3
where PNUM=3PNUM;
f #FOUND then
begin
send $SNUM from site 3 to site 1;
Select NAME into SNAME
from SUPPI.IER, at site 1
where SNUM--8SNUM
end
else begin
Select SNUM inw $SNUM
from SUPPLY; at site 4
where PNUM- SPNTUM;
send 3SNUM from site 4 to site 2;
Select NAME into SNAME
from SUPPLIER; av site 2
where SNUM=§SNUM
end,
weite{terminal, $NAME).

\¢) Local mapping transparency (level 3)

Figuro 3.7 Tha road-only application SUPOFPART
at diffarant lavels of distribution transparency.

Distribution transparency for Update Applications

2 Updaie subrres for
] attribur=s DEPTNUNM

Figure 3.8 The updete subtree of Lhe aliribute DEPTANUR
in the fragmeantation tree of relation EnAP

EMP, EMP; EMP, EMP,

EMP,; = PIeypwyw naste sar TaxShoerrnum < 1o(EMP)
EMP; = Plpapaumacraum oerrsunShogeriuu « (ot EMP)
EMPy = Plgsaunans sernvndSlosrmvue » 1o FMP)
EMP, * PJrenum sarrax monsunShorrmion » 1o EMP)

(@) Adifferent fragmentation and fragmentation tre= for relation EMP.

(EMP,): (EMP,):
EMPNUM | NAME SAL TAaX EMPNUM | MCRNUM | DEPTNUM
] SMITH 10000 1000 100 20 3
‘\\\\"—\\.h \\
Bat o 3
ore update ~ BT \
- e
Alter update i _\\\ \\\\ \\
(EMP,): t (EMP.) ss ™ N
EMPNUM | NAME | DEPINUM EMPNUM SAL TAX MGRNUM
100 SMITH 15 00 10000 1000 20

(&) Effect of updating DEPTNUM of ¢aaployee with EMFNUM = 100,

Figure 3.2 An update application

Update EMP
set DEPTNUM=15
where EMPNUM=1{(}).

{2} Fragmentation transparency (level 1)

Select NAME, SAT, TAX into SNAME, $SAL. $TAX

from EMP,

where EMPNUM- 100y

Select MGRNUM into IMGRNUM

from EMFa

where EMPNTM—_100;

Insert into EMP3 (EMPNUM, NAME, DEPTNUM).
{100, ENAME, 15},

Insert into EMPy (EMPNUM, SAL, TAX, MGRNUM):
(100, §SAL, $TAX, SMGRNUM),

Delete EMP, where EMPNUM=100;

Delete EMPa where EMPNUM ==100.

(b] Location teansparency (level 2]

Salect NAME. SAL, TAX into $NAME, $SAL, $TAX

from EMP; at site 1

where EMPNUMe=100;

Select MGRNUM into $SMGRNUM

from EMP; nt wite 2

where EMPNUM=10(;

Insert inte EMPs (EMPNUM, NAME, DEFTNUM)
at site 3; (100, SNAME, 15);

Insert into EMPa (EMPNUM, NAME, DEPTNUM)
at site 7: (100, SNAME, 15);

Insert inte EMP, (EMPNUM, SAL, TAX, MGRNUM)
at aite 4: (100, 3SAL, $TAX, SMGRNUM):

Inzert iato EMP (EMPNUM, SAL, TAX, MGRNUM)
at site 8: (100, $SAL, $TAX, INMGRNUM},

Delete EMP, at site 1 where EMPNUM=100;

Delete EMP; at slte 5 where EMPNUM=100;

Delete EMP> at site 2 where EMPNUM=100;

Delete EMP; at site 8 where EMPNTUM=100.

{e) Local mapping twransparency (level 3)

Filgure 3.10 An update application at different levels
of distribution transparency

Distribution Database Access Primitives

sLanguage definitions:
*For DB access Query returns Several values not just 1 as before

*Suffix REL : file by Pascal like & relation by SQL statement

Select EMPNUM NAMFE into $EMP_REL{SEMPNUM, $NAME) from EMP

repest
read(rertminal, $SNUM);
Select, PNUM into 3PNUM_RELISPNUM)
from SUPPLY
where SNUM==8SNUM;
repeat
read($PNUM. REL, $PNUM);
write(terminal, SPNUM)
until KND-QF-$PNUM . REL
until END-OF-TERMINAL-INPUT.

(2) The database i3 nccexsed for each SSNUM value

repeat
read(terminal, $SNUM);
write($SNUM_ REL{$SNUM), $SNUM)
until END.OF-TERMINAL-INPUT;
Seleet PNUM into $PANUM . REL{3PNUM)
from SUPPLY, $S5NUM_ REL
where SUPPLY.SNUM=§SNUM_REL.35NUM;
ropeat
read($PNUMLOREL, 3PNUM);
write(terminal, SPNUM)
until END-OF-3PNUM.. REL.

{b) The database i accessed afrer all the values of BSNUM have been collected

Select PNUM, SNUM into $TEMP_REL(STEMP _PNUM, $STEMP _ SNT°M)
from SUPPLY;
repeat
read(terminal, SSNUM);
Select STEMP .PNUM into $TEMP2_REL{STEMP2.PNUM)
from 3STEMP_REL
where $TEMP..PNUM=8SNUM;
repeat
read(ETEMP2_REL, 3TEMP2_PNUM);
write{terminal, 3TEMP2. .PNUM)
until END-OF-STEMPZ_REL
vutil END-OF-TERMINAL-INPUL.

{¢) The database is accessed before eolleeting the values of SSNUM

Flgure 3.11 Different ways of writing an application
with fragmentation transparency.

Integrity constraints in DDBs

Integrity Constraints samples:

* Which data values are allowed (age must be between 0 and 100)

* Which transactions are allowed(age cannot decrease)

* Can involve single or multiple relations

+All values of a given attribute of a relation exist also in some other relation for ensuring
correctness of derived fragmentation

* Example

Delete «
from SUPPLIER
where SNUM = $SNUM

(+ indicates the entire tuple). This operation could violate the above referential

integrity constraint. In order to verify that the constraint is not violated, it is
possible to modify the program as follows:

Select FSNUM
from SUPPLY
where SNUM = $SNUM;
if not #FOQUND then
Delete «
from SUPPLIER
where SNUM = §SNUM

